a2 United States Patent

Barton et al.

US009215400B2

US 9,215,400 B2
*Dec. 15, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(71)
(72)

(73)

")

@
(22)

(65)

(60)

(1)

(52)

(58)

CLIENT-SIDE MULTIMEDIA CONTENT
TARGETING SYSTEM

Applicant: TiVo Inc., Alviso, CA (US)

Inventors: James M. Barton, Los Gatos, CA (US);
Howard D. Look, Palo Alto, CA (US)

Assignee: TiVo Inc., Alviso, CA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 94 days.
This patent is subject to a terminal dis-
claimer.

Appl. No.: 13/867,913

Filed: Apr. 22,2013

Prior Publication Data
US 2013/0251348 Al Sep. 26, 2013

Related U.S. Application Data

Continuation of application No. 11/474,141, filed on
Jun. 22, 2006, now Pat. No. 8,453,180, which is a
division of application No. 10/339,699, filed on Jan. 8,
2003, now abandoned, which is a continuation-in-part

(Continued)
Int. Cl.
HO4N 5/445 (2011.01)
HO04N 5/91 (2006.01)
(Continued)
U.S. CL
CPCccoeonueue HO4N 5/91 (2013.01); HO4H 60/27

(2013.01); HO4H 60/46 (2013.01); HO4H 60/65
(2013.01):

(Continued)
Field of Classification Search

CPC HO4N 21/25891; HO4N 21/4147,
HO4AN 21/4334

1201

carouseled channel

USPC 725/58, 32,35, 40
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

4,977,455 A
5,027,400 A

12/1990 Young
6/1991 Baji et al.

(Continued)

FOREIGN PATENT DOCUMENTS

EP
EP

0774866 A2 5/1997
1158795 A2 11/2001

(Continued)
OTHER PUBLICATIONS

Chinese Patent Office, Application No. 200480004283.1, filed Jan. 8,
2004, First Office Action, dated Mar. 6, 2009.

(Continued)

Primary Examiner — Jivka Rabovianski
(74) Attorney, Agent, or Firm — Wong & Rees LLP

(57) ABSTRACT

A client-side multimedia content targeting system schedules
the recording, storing, and deleting of multimedia content on
a client system storage device. The system accepts as input a
prioritized list of program viewing preferences which is com-
pared with a database of program guide objects that indicate
when programs of interest are actually broadcast. The view-
er’s client system locally retains the viewer’s preferences and
other personal information that the viewer has entered and is
sent targeting information relating to program guide objects
by a server. Using the viewer’s preferences and personal
information, the client system creates a viewer profile, which
is used with the targeting information by the client system to
record content that is within the viewer profile. The described
client-based form of targeting can be applied to almost any
multimedia situation, including, but not limited to: TV shows,
movies, advertisements, product and service offerings,
music, radio, audio, etc.

21 Claims, 13 Drawing Sheets

1202

m

vy &

client system 1

client system 2

client system n

1205

US 9,215,400 B2
Page 2

(60)

(1)

(52)

(56)

Related U.S. Application Data
of application No. 09/422,139, filed on Oct. 20, 1999,

now Pat. No. 6,728,713.

Provisional application No. 60/347,181, filed on Jan.

8, 2002.

Int. Cl1.

HO4H 6027
HO04H 60/46
HO04H 60/65
HO4N 5/76
HO4N 7/025
HO4N 7/16
HO4N 77173
HO4N 217235
HO4N 217258
HO4N 21/4147
HO4N 21/433
HO4N 21/4335
HO4N 21/435
HO4N 21/442
HO4N 21/45
HO4N 21/458
HO4N 21/466
HO4N 21/472
HO4N 21/475
HO4N 21/658
HO4N 7/088
GO6F 11/20
U.S. CL

CPC ...

.. HO4N 5/76 (2013.01); HO4N 7/025
(2013.01); HO4N 7/162 (2013.01); HO4N
7717327 (2013.01); HO4N 21/235 (2013.01);
HO4N 21/25891 (2013.01); HO4N 21/4147
(2013.01); HO4N 21/435 (2013.01); HO4N
21/4331 (2013.01); HO4N 21/4334 (2013.01);
HO4N 21/4335 (2013.01); HO4N 21/44222
(2013.01); HO4N 21/458 (2013.01); HO4N
21/4532 (2013.01); HO4N 21/466 (2013.01);
HO4N 21/4662 (2013.01); HO4N 21/4755
(2013.01); HO4N 21/47214 (2013.01); HO4N
21/6582 (2013.01); GOGF 11/2094 (2013.01);
GOGF 11/2097 (2013.01); GOGF 2201/80
(2013.01); GO6F 2201/82 (2013.01); HO4N
7/088 (2013.01)

(2008.01)
(2008.01)
(2008.01)
(2006.01)
(2006.01)
(2011.01)
(2011.01)
(2011.01)
(2011.01)
(2011.01)
(2011.01)
(2011.01)
(2011.01)
(2011.01)
(2011.01)
(2011.01)
(2011.01)
(2011.01)
(2011.01)
(2011.01)
(2006.01)
(2006.01)

References Cited

U.S. PATENT DOCUMENTS

5,121,476
5,247,364
5,619,247
5,640,453
5,648,824
5,864,823
5,991,799 A 1
6,177,931 Bl

6,229,532 Bl

6,243,741 Bl

>

6/1992
9/1993
4/1997
6/1997
7/1997
1/1999
1/1999
1/2001
5/2001
6/2001

Yee

Banker et al.
Russo
Schuchman et al.
Dunn et al.
Levitan

Yen

Alexander et al.
Fujii

Utsumi

6,317,722 B1 112001 Jacobi et al.
6,324,338 Bl 11/2001 Wood et al.
6,400,407 Bl 6/2002 Zigmond et al.
6,614,987 Bl 9/2003 Ismail et al.
6,698,020 Bl 2/2004 Zigmond et al.
6,718,551 Bl 4/2004 Swix et al.
6,757,691 Bl 6/2004 Welsh et al.
6,898,762 B2 5/2005 Ellis et al.

2002/0049635 Al
2002/0108113 Al
2002/0110360 Al
2002/0199194 Al
2003/0182567 Al
2005/0149964 Al

4/2002 Mai et al.

8/2002 Schaffer et al.

8/2002 Potrebic
12/2002 Ali

9/2003 Barton et al.

7/2005 Thomas et al.

FOREIGN PATENT DOCUMENTS

GB 2340633 A 2/2000
GB 2343076 A 4/2000
JP 02002-345491 12/2002
JP 2002-366570 12/2002
JP 2002-369094 12/2002
WO WO 98/28906 7/1998
WO WO 00/01449 1/2000
WO WO 02/01440 A2 2/2002
OTHER PUBLICATIONS

Current Claims, Application No. 200480004283.1, as of Mar. 6,
2009.

Patent Cooperation Treaty, “Notification Concerning Transmittal of
International Preliminary Search Report on Patentability,” PCT/
US2004/00564, dated Jul. 21, 2005, 8 pages.

European Patent Office, “Supplementary European Search Report,”
App No. 04700912.1, dated Jan. 1, 2006, 5 pages.

English translation of foreign office action for Japanese patent appli-
cation No. 2006-500885, dated Jul. 16, 2009, 4 pages.

English translation of foreign office action for Japanese patent appli-
cation No. 2006-500885, dated Feb. 18, 2010, 3 pages.

European Patent Office, European Patent application No. 04700912.
1, Office Action dated Mar. 28, 2012, 5 pages.

Claims as of Mar. 28, 2012 in European Patent application No.
04700912.1, 10 pages.

The State Intellectual Property Office of the People’s Republic of
China, “Notification of the Second Office Action,” Chinese Applica-
tion No. 200480004283.1, dated Nov. 11, 2010, 15 pages. (English
Translation included).

Claims as of Nov. 11, 2010 in Chinese Application No.
200480004283.1, 5 pages.

The State Intellectual Property Office of the People’s Republic of
China, Notification of Decision of Rejection dated May 25, 2011,
Chinese Application No. 20048004283.1, 15 pages.

Chinese Patent Office, Chinese Patent Application No.
200480004283.1, First Office Action, dated Mar. 6, 2009, 12 pages
(English Translation included).

Claims as of Mar. 6, 2009 in Chinese Patent Application No.
200480004283.1, 7 pages.

Australian Patent Office, Application No. SG 200504349-2, Written
Opinion, mailed Jan. 13, 2009, 6 pages.

Claims as of Jan. 13, 2009 in Australian Patent Office Application No.
SG 200504349-2, 7 pages.

“Notification of First Office Action” received in Chinese Patent
Application No. 20111016199.0 dated Feb. 29, 2012, 9 pages.
Chinese Patent Office, Application No. 200480004283.1, Foreign
Office Action dated Aug. 28, 2014.

Chinese Patent Office, Application No. 200480004283.1, Pending
Claims as of Aug. 28, 2014.

US 9,215,400 B2

Sheet 1 of 13

Dec. 15, 2015

U.S. Patent

) P 101 WoISAS 1USWATRUBIA SUIMIIA UOISIAJ[S [PAINQINSI(] ¥] "1
SWAISAY JUaI[)) o o ’

. 111
1 S coang Auoydap - L0T \cS

- SISAJRUY

aseqeiR(
IS [enua)

uvoneodsy

/

S01
asequiR(U1

QMR ™t \
W) v ,
S UOISSTUSUDL]

—* soaprosg

01

N

UOISSTIUSURI],

SIOAIDG
nonnqIISIq

HU e - 3TIN0S UOISIAD]Y], 1580PROIY

jo0fqQ) Swmorp
UoISIARIRL

US 9,215,400 B2

Sheet 2 of 13

Dec. 15, 2015

U.S. Patent

102090 wEBE A B I0 ommonng 17 "S1g

- euEA anquuy
0¢

od£1 emmquyy

\

10Z

. ___—unod aoudseey

100{
o7 —— dr »eiqo

@

\‘

ANqUIY Uy

—

1817 SINqUTY

/

00¢

US 9,215,400 B2

Sheet 3 of 13

Dec. 15, 2015

U.S. Patent

eIoyog 109[q(ue Jo axmonys ¢ 81

c0¢

\

"

oweN INQLIY

0¢

odA 1 amqumy

/

T

@

<«
orerdwa] oIQLINY N

/

10t

00¢

1S177 orepdwa [, anquyy

\

@

US 9,215,400 B2

Sheet 4 of 13

Dec. 15, 2015

U.S. Patent

ydern £1030211(7 € Suisioarl] y 81

190040

fiopang «SBULMOUS,, 685Y

«TOSTRI[IOH,, LE9PS

polqo \ €T e A R
WOBoL] |~ —— / > 103[q0
(UABID SOM,, LEOYS 0¥ HOMAN
‘ \‘ LO¥
oowompermpoes e >
\ 1o «JEV, L9ST
YO Kro1a11(3
\ S0t
1990 WPIOIUGOL, LEYIS =7 T]
10V — | wedorg | e] 122:90
.. ﬁ.HOaUD.HHmvx/QZ @mhﬂm bOHOQHmD
oy -
SeTREIN 011 G|
uosuolg Sepry) ‘oukep uyof 1010V
pIo ugor 1030911(]
s19%998 SYL oL
D] SIAGLI | WD SINGLIIY \Y «SIOMIDN,, €7

Suhep Uyof,, LEH9S

12[q0
A1039311(]

100y

12lqo

0¥ — | fiowang

US 9,215,400 B2

Sheet 5 0of 13

Dec. 15, 2015

U.S. Patent

ajge, dmjoo] aous1ajalg

ELEIE)Y WBopm
anfeA eo 0 osnjeA
ALJUS] DOUDADJDAL AU 2oUsL2jo4d 4—— Funey
, JORRIICT
, o1y
2AA] ML
WBIBM 3o
anjeA v e IM[BA
g&.w mbim&.w.\mknw \FQQ.N mu:mx&\mknﬂ
OSTIMOYS OHH.» onjeA
vos $T0 souedlIudIg
005+ S kel =} =
Jsqunygy omy 30URIRYNIJ IOMITA SOLIDG
NJY A INGLALY UDN BINGLTY

1009
20UaIRJ214
15237pU]

106 —

1009
aoedsawieN

UOIRULIOTU] S0UQI9Ja1d SUISSa001] ¢ "1

(Quhepn Tmof,, anjep
S0 adueoIUdIg

0051+ wiem
(SQUINGE 3214, | 29USISIAIJ JOMOIA
2nj0,4 PIMGLIIY SUIDN DINGLITTF

SOUBIDIRIY { 20UaIaIeIg

v

20U0IJAI
1010y

1004
90U0I9YRIg
15011

SBOI] S0UAIS]aIg

US 9,215,400 B2

Sheet 6 of 13

Dec. 15, 2015

U.S. Patent

L |

Q. < ° * N .
o s3urp1003y SUIMPaYoS :9 “Bid
ompayog mdug owni]
< .
asn m.ﬂmﬁf,\\l N ndug
109 sjqepreae mduf il
B a[npoyos ooBdg o
<« =

1
] ~ ©
— g
L1 L | E
[¢4
O
=
=t
.
|] -
\\\A froede)
weifo1g pornpayos v sondxg Sup10oay o w [BI0L
Surpiooay uBg Jurpiooay] pesodoid v /
(1oso] fpend g v

pue wyosie wotssarduwod uo
spuadep) weiSoid £q uexe; soedg

{

(ramara Aq e1qerionuos) weidoxd deoy o swt],

£09

‘wesdoud Aq uoye; souds uel

1912018 81 90eds sjgejiear ‘uonendxa pue
Surpiooor Surde)s UsomIeq Soun [[e 1Y

31 9[MpaYos ue))

US 9,215,400 B2

Sheet 7 of 13

Dec. 15, 2015

U.S. Patent

weifold

SUIPI029Y B SUlnpayos 37 "8

Surpiosey

2MpPAYds viL
1ON o]

A

Smmorysg
pa1201ag
goea 10

auoQ

L

S301[IUCY) 208dS SO O
15897 Ag STWMOYS 1105

Sa i

;uonendxy

T2U0YS
ON

30L
Surmoyg

pa1oojeg
yoes 103

suo(g

B,

O1L
1o1Fue)) nduy

s301[Ju0) 208dS 3SOIA O
18827] Ag SSUIMOYS HOS

gaar SSUTMOYS 309105

E

90L

sorruosy nday oN

on

0L

weijord

oNpIAYOS <OL

J0 3urmoyg
§oBs 10

auoc

sl Aq paIspi(y

&

i SSUIMOTS 109708

J01SUT 9yBIQULD)

10L

SSUIMOYS Q[AR[IEAY {e— 1iBIS

U.S. Patent Dec. 15, 2015 Sheet 8 of 13 US 9,215,400 B2

program memaory

802 ———

Initial
bootstrap
sequence

801

B CPU

8 05 P pal’lition
table

| persistent store

803 ———#

\T/\|/\l 1 1/

bootstrap second 0s app s/w scratch
stage
/ loader / /
804 / 807 808 809

806

Fig. 8

U.S. Patent Dec. 15, 2015 Sheet 9 of 13
901 Boot
902 Read boot
sector
Load primary
903 second stage
boot loader 905
//
Load backup
Load okay? second stage
904 boot loader
N |
Pass control to
906 second stage
booter
907 Load primary OS 909
Load backup
L.oad okay?
908 Os
Y
|
910 Pass control
to OS
911 Load primary
app. s’'w

|

©

US 9,215,400 B2

Fig. 9a

U.S. Patent Dec. 15, 2015 Sheet 10 of 13 US 9,215,400 B2

<;> //913

Load backup
app. s/w

Load okay?

912 —r

J |

Pass control to
app. s/w

914

Record status of
s/w installation
attempts

|
!

Check partition
status

915

916

|

917

Was install in
progress?

918 919

Indicate
success for
this level

Was load off
primary?

Copy backup to
primary partition and
indicate failure

Fig. 9b

Done
w/partitions?

921

U.S. Patent Dec. 15, 2015 Sheet 11 of 13 US 9,215,400 B2

1001
Copy new s/w
to backup
partition
1002
™ Mark DB

1003
\ Swap primary and
backup partition

indicators

1004

T~ Reboot system

U.S. Patent Dec. 15, 2015 Sheet 12 of 13 US 9,215,400 B2

Distribution/Telephony
servers

1101

\

client system client system R client system
1103 1104 1105

U.S. Patent

Dec. 15, 2015

carouseled channel

Sheet 13 of 13

1202

US 9,215,400 B2

A

B

C

v ¥

N
.
~

A\
»

Ty
’

<

client system 1

client system 2

\

1203

\

1204

N
N
“A

client system n

/

1205

US 9,215,400 B2

1
CLIENT-SIDE MULTIMEDIA CONTENT
TARGETING SYSTEM

CROSS REFERENCE TO RELATED
APPLICATIONS

This application claims benefit under 35 U.S.C. §120 as a
Continuation of U.S. Ser. No. 11/474,141, filed Jun. 22, 2006;
which is a Divisional of U.S. patent application Ser. No.
10/339,699, filed Jan. 8, 2003; which claims benefit of U.S.
Provisional Patent Application Ser. No. 60/347,181, filedon 8
Jan. 2002, and is a Continuation-in-Part of U.S. patent appli-
cation Ser. No. 09/422,139, filed on 20 Oct. 1999, now U.S.
Pat. No. 6,728,713 issued Apr. 27, 2004. The entire contents
of each of the above applications are hereby incorporated by
reference for all purposes, as if set forth herein.

TECHNICAL FIELD

The disclosure relates to the targeting of multimedia con-
tent to a viewer via a client system. More particularly, the
disclosure relates to using viewer profile data resident on a
client system to retrieve targeted multimedia content from a
server.

BACKGROUND

A classic tension exists in the design of automated data
processing systems between pure client-server based sys-
tems, such as computer mainframe systems or the World
Wide Web, and pure distributed systems, such as Networks of
Workstations (NOWS) that are used to solve complex com-
puter problems, such as modeling atomic blasts or breaking
cryptographic keys.

Client-server systems are popular because they rely on a
clean division of responsibility between the server and the
client. The server is often costly and specially managed, since
it performs computations or stores data for a large number of
clients. Each client is inexpensive, having only the local
resources needed to interact with the user of the system. A
network of reasonable performance is assumed to connect the
server and the client. The economic model of these systems is
that of centralized management and control driving down the
incremental cost of deploying client systems.

However, this model has significant costs that must be
considered. For instance, the incremental cost of adding a
new client system may be quite high. Additional network
capacity must be available, sufficient computing resources
must be available to support that client, including storage,
memory and computing cycles, and additional operational
overhead is needed for each client because of these additional
resources. As the central servers become larger and more
complex they become much less reliable. Finally, a system
failure of the server results in all clients losing service.

Distributed systems are popular because the resources of
the system are distributed to each client, which enables more
complex functionality within the client. Access to programs
ordata is faster since they are located with the client, reducing
load on the network itself. The system is more reliable, since
the failure of a node affects only it. Many computing tasks are
easily broken down into portions that can be independently
calculated, and these portions are cheaply distributed among
the systems involved. This also reduces network bandwidth
requirements and limits the impact of a failed node.

On the other hand, a distributed system is more complex to
administer, and it may be more difficult to diagnose and solve
hardware or software failures.

10

15

20

25

30

35

40

45

50

55

60

65

2

Television viewing may be modeled as a client-server sys-
tem, but one where the server-to-client network path is for all
intents and purposes of infinite speed, and where the client-
to-server path is incoherent and unmanaged. This is a natural
artifact of the broadcast nature of television. The cost of
adding another viewer is zero, and the service delivered is the
same as that delivered to all other viewers.

There have been, and continue to be, many efforts to deliver
television programming over computer networks, such as the
Internet, or even over a local cable television plant operating
as a network. The point-to-point nature of computer networks
makes these efforts unwieldy and expensive, since additional
resources are required for each additional viewer. Fully inter-
active television systems, where the viewer totally controls
video streaming bandwidth through a client settop device,
have proven even more uneconomical because dedication of
server resources to each client quickly limits the size of the
system that can be profitably built and managed.

However, television viewers show a high degree of interest
in choice and control over television viewing. A proper dis-
tributed database management system is described in U.S.
patent application Ser. No. 09/422,139 also owned by the
Applicant, and described below, that addresses the many
problems with the approaches described above. A distributed
database management system enables a client to easily main-
tain the data in its local database and to synchronize its local
database with the main server database. It also provides a
secure data transmission link between a server and its clients.

Typical client-server systems use viewer information to
profile the viewers’ viewing habits. Traditional targeting
mechanism such as those employed by MatchLogic of West-
minster, Colo., and DoubleClick of New York, N.Y., rely on
server-side tracking of consumers, with targeting decisions
made by a central server. One of the major drawbacks to the
central server approach is that the viewer’s personal informa-
tion is kept in a central server. The central server is vulnerable
to hackers and identity thieves.

It would be advantageous to provide a client-side multime-
dia content targeting system that provides client-based con-
tent targeting for viewers. It would further be advantageous to
provide a client-side multimedia content targeting system
that protects a viewer’s personal information by retaining the
personal information within the viewer’s client system.

SUMMARY

Client-side multimedia content targeting systems are
described. The systems provide client-based content target-
ing for viewers. In addition, the systems protect a viewer’s
personal information by retaining the personal information
within the viewer’s client system.

A client device, typified in U.S. Pat. No. 6,233,389, owned
by the Applicant, provides functionality typically associated
with central video servers, such as storage of a large amount
of video content, ability to choose and play this content on
demand, and full “VCR-like” control of the delivery of the
content, as typified in U.S. Pat. No. 6,327,418, owned by the
applicant.

A preferred embodiment schedules the recording, storing,
and deleting of multimedia content on a client system storage
device. A system accepts as input a prioritized list of program
viewing preferences which is compared with a database of
program guide objects. The program guide objects indicate
when content of interest are actually broadcast.

A schedule of time versus available storage space is gen-
erated that is optimal for the viewer’s explicit or derived
preferred content. The viewer may request that certain con-

US 9,215,400 B2

3

tent be captured, which results in the highest possible priority
for those content. The viewer may also explicitly express
preferences using appurtenances provided through the viewer
interface. Preferences may additionally be inferred from
viewing patterns. These preferences correspond to objects
stored in a replicated database.

The viewer’s client system locally retains the viewer’s
preferences and other personal information that the viewer
has entered. The viewer’s information is kept in the privacy of
his own home via the client system. The client system makes
the decisions on how to target the consumer.

The client system is sent targeting information relating to
program guide objects by a server. Using the viewer’s pref-
erences and personal information, the client system creates a
viewer profile. Comparing the viewer profile and the targeting
information, the client system records content that is within
the viewer profile.

The described client-based form of targeting is infinitely
flexible. It can be applied to almost any multimedia situation,
including, but not limited to: TV shows, movies, advertise-
ments, product and service offerings, music, radio, audio, etc.

Other aspects and advantages will become apparent from
the following detailed description in combination with the
accompanying drawings, illustrating, by way of example, the
principles described herein.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1is a block schematic diagram of a preferred embodi-
ment of a distributed television viewing management system;

FIG. 2 is a block schematic diagram of the structure of a
viewing object in computer storage for programmatic access;

FIG. 3 is a block schematic diagram showing how the
schema for a viewing object is structured in computer storage
for programmatic access;

FIG. 4 is a block schematic diagram showing an example
graph of relationships between viewing objects which
describe information about programs;

FIG. 5 is a block schematic diagram showing an example
graph of relationships generated when processing viewer
preferences to determine programs of interest;

FIG. 6 is a block schematic diagram showing the schedul-
ing of inputs and storage space for making recordings;

FIG. 7 is a flowchart showing the steps taken to schedule a
recording using the mechanism depicted in FIG. 6;

FIG. 8 is a block schematic diagram of a preferred embodi-
ment showing the bootstrap system configuration;

FIG. 9a is a block schematic diagram of the decision flow-
chart for the bootstrap component;

FIG. 954 is a block schematic diagram of the decision flow-
chart for the bootstrap component according to an embodi-
ment;

FIG. 10 is a block schematic diagram of the decision flow-
chart for the software installation procedure;

FIG. 11 is a block schematic diagram of a preferred
embodiment of distributing content information to a plurality
of client systems that record content from a broadcast signal
based on local viewer information; and

FIG. 12 is a block schematic diagram showing a plurality of
client systems that record content from a carouseled broad-
cast signal based on local viewer information.

DETAILED DESCRIPTION

A client-side multimedia content targeting system is
described. A system provides client-based content targeting
for viewers. In addition, a system that protects a viewer’s

25

30

35

40

45

50

4

personal information by retaining the personal information
within the viewer’s client system is described.

A television viewing information transmission and collec-
tion system that improves the ability of the individual viewer
to select and automatically timeshift television programs
while providing opportunities for a service provider to
enhance and direct the viewing experience is described. A
system which is fully distributed is described, in that calcu-
lations pertaining to an individual viewer are performed per-
sonally for that viewer within a local client device, while
providing for the reliable aggregation and dissemination of
information concerning viewing habits, preferences or pur-
chases.

The Database of Television Viewing Information

FIG. 1 gives a schematic overview of a system. Central to
the system is a method and apparatus for maintaining a dis-
tributed database of television viewing information among
computer systems at a central site 100 and an extremely large
number of client computing systems 101. The process of
extracting suitable subsets of the central copy of the database
is called “slicing” 102, delivering the resulting “slices” to
clients is called “transmission” 103, delivering information
collected about or on behalf of the viewer to the central site is
called “collection” 104, and processing the collected infor-
mation to generate new television viewing objects or reports
is called “analysis” 107; in all cases, the act of recreating an
object from one database within another is called “replica-
tion” 105. Data items to be transmitted or collected are termed
“objects” 106, and the central database and each replicated
subset of the central database contained within a client device
is an “object-based” database. The objects within this data-
base are often termed “television viewing objects”, “viewing
objects”, or simply “objects”, emphasizing their intended
use. However, one skilled in the art will readily appreciate that
objects can be any type of data.

The viewing object database provides a consistent abstract
software access model for the objects it contains, independent
of and in parallel with the replication activities described
herein. By using this interface, applications may create,
destroy, read, write and otherwise manipulate objects in the
database without concern for underlying activities and with
assurance that a consistent and reliable view of the objects in
the database and the relationships between them is always
maintained.

Basic Television Viewing Object Principles

Referring to FIG. 2, television viewing objects are struc-
tured as a collection of “attributes” 200. Each attribute has a
type 201, e.g., integer, string or boolean, and a value 202. All
attribute types are drawn from a fixed pool of basic types
supported by the database.

The attributes of an object fall into two groups: “basic”
attributes, which are supplied by the creator or maintainer of
the viewing object; and “derived” attributes, which are auto-
matically created and maintained by mechanisms within the
database. Basic attributes describe properties of the object
itself; derived attributes describe the relationships between
objects. Basic attributes are replicated between databases,
whereas derived attributes are not.

With respect to FIG. 3, there is a small set of fundamental
object types; each object type is represented as a specific set
of related attributes 300, herein called a “schema”. The
schema defines a template for each attribute type 301, which
includes the type 302 and name of the attribute 303. Actual
television viewing objects are created by allocating resources
for the object and assigning values to the attributes defined by
the schema. For example, a “program” schema might include
attributes such as the producer, director or actors in the pro-

US 9,215,400 B2

5

gram, an on-screen icon, a multi-line description of the pro-
gram contents, an editorial rating of the program, etc. A
physical program object is created by allocating storage for it,
and filling in the attributes with relevant data.

There is one special object type predefined for all databases
called the schema type. Each schema supported by the data-
base is represented by a schema object. This allows an appli-
cation to perform “introspection” on the database, i.e., to
dynamically discover what object types are supported and
their schema. This greatly simplifies application software and
avoids the need to change application software when schemas
are changed, added or deleted. Schema objects are handled
the same as all other viewing objects under the methods
described herein.

Referring again to FIG. 2, each object in a database is
assigned an “object ID” 203 which must be unique within the
database. This object ID may take many forms, as long as
each object ID is unique. The preferred embodiment uses a
32-bit integer for the object ID, as it provides a useful tradeoff
between processing speed and number of unique objects
allowed. Each object also includes a “reference count” 204,
which is an integer giving the number of other objects in the
database which refer to the current object. An object with a
reference count of zero will not persist in the database (see
below).

One specific type of viewing object is the “directory”
object. A directory object maintains a list of object IDs and an
associated simple name for the object. Directory objects may
include other directory objects as part of the list, and there is
a single distinguished object called the “root” directory. The
sequence of directory objects traversed starting at the root
directory and continuing until the object of interest is found is
called a “path” to the object; the path thus indicates a particu-
lar location within the hierarchical namespace created among
all directory objects present in the database. An object may be
referred to by multiple paths, meaning that one object may
have many names. The reference count on a viewing object is
incremented by one for each directory which refers to it.
Methods for the Maintenance of Database Consistency and
Accuracy

One of the features of a preferred embodiment is to insure
that each database replica remains internally consistent at all
times, and that this consistency is automatically maintained
without reference to other databases or the need for connec-
tion to the central site. There is no assurance that transmission
or collection operations happen in a timely manner or with
any assured periodicity. For instance, a client system may be
shut off for many months; when a transmission to the system
is finally possible, the replication of objects must always
result in a consistent subset of the server database, even if it is
not possible to transmit all objects needed to bring the central
and client databases into complete synchronization.

Even more serious, there can be no guarantee of a stable
operational environment while the database is in use or being
updated. For example, electrical power to the device may
cease. This system treats all database updates as “transac-
tions”, meaning that the entire transaction will be completed,
ornone of it will be completed. The specific technique chosen
is called “two-phase commit”, wherein all elements of the
transaction are examined and logged, followed by performing
the actual update. One familiar in the art will appreciate that
a standard journaling technique, where the transaction is
staged to a separate log, combined with a roll-forward tech-
nique which uses the log to repeat partial updates that were in
progress when the failure occurred, is sufficient for this pur-
pose.

15

20

40

45

55

6

One required derived attribute of every object is the “ver-
sion”, which changes with each change to the object; the
version attribute may be represented as a monotonically
increasing integer or other representation that creates a mono-
tonic ordering of versions. The schema for each object that
may be replicated includes an attribute called “source ver-
sion” which indicates the version of the object from which
this one was replicated.

Transmission of a viewing object does not guarantee that
every clientreceives that object. For instance, while the object
is being broadcast, external factors such as sunspots, may
destroy portions of the transmission sequence. Viewing
objects may be continually retransmitted to overcome these
problems, meaning that the same object may be presented for
replication multiple times. It is inappropriate to simply update
the database object each time an object to be replicated is
received, as the version number will be incremented although
no change has actually occurred. Additionally, it is desirable
to avoid initiating a transaction to update an object if it is
unnecessary; considerable system resources are consumed
during a transaction.

Two approaches are combined to resolve this problem.
First, most objects will have a basic attribute called “expira-
tion”. This is a date and time past which the object is no longer
valid, and should be discarded. When a new object is
received, the expiration time is checked, and the object dis-
carded if it has expired. Expiration handles objects whose
transmission is delayed in some fashion, but it does nothandle
multiple receptions of the same unexpired object.

The source version attribute handles this problem. When a
viewing object is transmitted, this attribute is copied from the
current version attribute of the source object. When the view-
ing object is received, the source version of the received
object is compared with the source version of the current
object. If the new object has a higher source version attribute,
it is copied over the existing object, otherwise it is discarded.

It is assumed that a much greater number of viewing
objects are transmitted than are of interest to any particular
client system. For example, a “channel” viewing object which
describes the channels on a particular cable system is of no
interest to clients attached to other cable systems. Because of
the overhead of capturing and adding new objects to the
database, it would be advantageous for received objects to be
filtered on other attributes in addition to those described
above. A system accomplishes this by using a filtering pro-
cess based on object type and attribute values. In one imple-
mentation, this filtering process is based on running execut-
able code of some kind, perhaps as a sequence of commands,
which has been written with specific knowledge of various
object types and how they should be filtered.

In a preferred embodiment, a “filter” object is defined for
each object type which indicates what attributes are required,
should not be present, or ranges of values for attributes that
make it acceptable for addition to the database. One skilled in
the art will readily appreciate that this filter object may con-
tain executable code in some form, perhaps as a sequence of
executable commands. These commands would examine and
compare attributes and attribute values of object being fil-
tered, resulting in an indication of whether the object should
be the subject of further processing.

Viewing objects are rarely independent of other objects.
For example, a “showing” object (describing a specific time
on a specific channel) is dependent on a “program” object
(describing a specific TV program). One important aspect of
maintaining consistency is to insure that all dependent objects
either already exist in the database or are to be added as part
of'a single transaction before attempting to add a new viewing

US 9,215,400 B2

7

object. This is accomplished using a basic attribute of the new
viewing object called the “dependency” attribute, which sim-
ply lists the object IDs and source versions of objects that the
new object is dependent on. Clearly, new versions of an object
must be compatible, in the sense that the schema defining new
versions be the same or have a strict superset of the attributes
of the original schema.

When a new viewing object is received, the database is first
checked to see if all dependencies of that object are present; if
s0, the object is added to the database. Otherwise, the new
object is “staged”, saving it in a holding area until all depen-
dent objects are also staged. Clearly, in order for a new set of
viewing objects to be added to the database, the dependency
graph must be closed between objects in the staging area and
objects already existing in the database, based on both object
1D and source version. Once closure is achieved, meaning all
dependent objects are present, the new object(s) are added to
the database in a single atomic transaction.

Naming and Finding Television Viewing Objects

Directory objects have been described previously. Refer-
ring to FIG. 4, the collection of directory objects, and the
directed graph formed by starting at the root path 400 and
enumerating all possible paths to viewing objects is called a
“namespace”. In order for an object to be found without
knowing a specific object ID, one or more paths within this
namespace must refer to it. For instance, application software
has little interest in object IDs, instead the software would like
to refer to objects by paths, for instance “/tvschedule/today”.
In this example, the actual object referred to may change
every day, without requiring changes in any other part of the
system.

One way in which a path to an object may be established is
by specifying a “pathname” basic attribute on the object. The
object is added to the database, and directory objects describ-
ing the components of the path are created or updated to add
the object. Such naming is typically used only for debugging
the replication mechanisms. Setting explicit paths is discour-
aged, since the portions of the central database replicated on
each client system will be different, leading to great difficulty
in managing pathnames among all replicas of the database.

A preferred method for adding an object to the database
namespace is called “indexing”. In a preferred embodiment,
an “indexer” object is defined for each object type which
indicates what attributes are to be used when indexing it into
the database namespace. One skilled in the art will readily
appreciate that this indexer object may contain executable
code in some form, perhaps as a sequence of executable
commands. These commands would examine and compare
attributes and attribute values of object being indexed, result-
ing in an indication of where the object should be located in
the namespace.

Based on the object type, the indexer examines a specific
set of attributes attached to the object. When such attributes
are discovered the indexer automatically adds a name for the
object, based on the value of the attribute, within the hierar-
chical namespace represented by the graph of directories in
the database. Referring again to FIG. 4, a program object may
have both an “actor” attribute with value “John Wayne” and a
“director” attribute with value “John Ford” 401. The root
directory might indicate two sub-directories, “byactor” 402
and “bydirector” 403. The indexer would then add the paths
“/byactor/John Wayne” and “/bydirector/John Ford” to the
database, both of which refer to the same object 401.

A derived attribute is maintained for each object listing the
directory objects which refer to this object 404. As the indexer
adds paths to the namespace for this object, it adds the final
directory ID in the path to this list. This insures closure of the

25

30

40

45

8

object graph—once the object has been found, all references
to that object within the database are also found, whether they
are paths or dependencies.

This unique and novel method of adding objects to the
database has significant advantages over standard
approaches. The indexer sorts the object into the database
when it is added. Thus, the search for the object associated
with a particular path is a sequence of selections from ordered
lists, which can be efficiently implemented by one familiar
with the art.

Deleting Objects from the Database

While the rules for adding objects to the database are
important, the rules for removing objects from the database
are also important in maintaining consistency and accuracy.
For example, if there were no robust rules for removing
objects, the database might grow unboundedly over time as
obsolete objects accumulate.

The cardinal rule for deleting objects from the database is
based on reference counting; an object whose reference count
drops to zero is summarily deleted. For instance, this means
that an object must either be referred to by a directory or some
other object to persist in the database. This rule is applied to
all objects in the closed dependency graph based on the object
being deleted. Thus, if an object which refers to other objects
(such as a directory) is deleted, then the reference count on all
objects referred to is decremented, and those objects similarly
deleted on a zero count, and so forth.

There is also an automatic process which deletes objects
from the database called the “reaper”. Periodically, the reaper
examines all objects in the database, and depending on the
object type, further examines various attributes and attribute
values to decide if the object should be retained in the data-
base. For example, the expiration attribute may indicate that
the object is no longer valid, and the reaper will delete the
object.

In the preferred embodiment, using a method similar to (or
perhaps identical to) the filtering and indexing methods
described above, the reaper may instead access a reaper object
associated with the object type of the current object, which
may contain executable code of various kinds, perhaps a
sequence of executable commands. This code examines the
attributes and attribute values of the current object, and deter-
mines if the object should be deleted.

The overhead of individually deleting every object for
which the reference count has been decremented to zero may
be quite high, since every such deletion results in a transaction
with the database. It would be advantageous to limit the
performance impact of reaping objects, such that foreground
operations proceed with maximum speed. In a preferred
embodiment, this is accomplished using a technique based on
common garbage collection methods.

For instance, instead of deleting an object whose reference
count has been decremented to zero, the reaper performs no
other action. Periodically, a background task called the gar-
bage collector examines each object in the database. If the
object has a reference count of zero, it is added to a list of
objects to be deleted. In one embodiment, once the garbage
collector has examined the entire database, it would delete all
such objects in a single transaction. One familiar in the art will
appreciate that this method may also result in a significant
performance penalty, as other accesses to the database may be
delayed while the objects are being deleted. In addition, if all
objects are to be properly deleted, changes to the database
may have to be delayed while the garbage collector is active,
resulting in even worse performance.

In a preferred embodiment, the garbage collector examines
the database in a series of passes. Once a specific number of

US 9,215,400 B2

9

objects has been collected, they are deleted in a single trans-
action. Said process continues until all objects have been
examined. This technique does not guarantee that all garbage
objects are collected during the examination process, since
parallel activities may release objects previously examined.
These objects will be found, however, the next time the gar-
bage collector runs. The number of objects deleted in each
pass is adjustable to achieve acceptable performance for other
database activities.

Operations on the Distributed Television Viewing Object
Database

Considerations in Maintaining the Distributed Viewing
Object Database

The replication of television viewing objects among the
instances of the distributed database necessarily requires the
transmission of objects over unreliable and unsecure distri-
bution channels.

For example, if the objects are transmitted over a broadcast
mechanism, such as within a radio or television transmission,
there can be no assurance that the data is transmitted accu-
rately or completely. Weather, such as rainstorms, may cause
dropouts in the transmission. Other sources of interference
may be other broadcast signals, heavy equipment, household
appliances, etc.

One skilled in the art will readily appreciate that there are
standard techniques for managing the transmission of data
over unreliable channels, including repeated transmissions,
error correcting codes, and others, which may be used for
transmission, any or all of which may be used in any particu-
lar instance.

For efficiency, objects to be replicated are gathered
together into distribution packages, herein called “slices”. A
slice is a subset of the television viewing object database
which is relevant to clients within a specific domain, such as
a geographic region, or under the footprint of a satellite trans-
mitter.

Security ofthese slices is quite important. Slices are used to
add objects to the database which are used to provide valuable
services to users of the database, as well as to store informa-
tion that may be considered private or secret. Because of the
broadcast-oriented nature of slice transmission, slices may be
easily copied by third parties as they are transmitted. A prac-
tical solution to these problems is to encrypt the slice during
transmission. An ideal reference text on the techniques for
employment is “Applied Cryptography: Protocols, Algo-
rithms, and Source Code in C” by Bruce Schneier, John Wiley
and Sons, 1995.

In a preferred embodiment of, a secure, encrypted channel
is established using techniques similar to those described in
U.S. Pat. No. 4,405,829, often described as asymmetric key
encryption, or sometimes public/private key pair encryption.
A practitioner skilled in the art will recognize that protocols
based on asymmetric key encryption serves as a reliable and
efficient foundation for authentication of client devices and
secure distribution of information. In general, authentication
is provided using an exchange of signed messages between
the client and central systems. Secure distribution is provided
by encrypting all communications using a short-lived sym-
metric key sent during an authentication phase.

Successtul security requires that sender and receiver agree
beforehand on the asymmetric key pair to be used for encryp-
tion. Such key distribution is the weakest link in any crypto-
graphic system for protecting electronic data. U.S. Pat. No.
6,385,739, entitled “Self-Test Electronic Assembly and Test
System,” filed Jul. 19, 1999, also owned by the Applicant,
describes a mechanism whereby the client device generates
the asymmetric key pair automatically as the final step in the

10

15

20

25

30

35

40

45

50

55

60

65

10

manufacturing process. The private key thus generated is
stored within a secure microprocessor embedded within the
client device, such that the key is never presented to external
devices. The public key thus generated is transmitted to a
local manufacturing system, which records the key along
with the client serial number in a secure database. This data-
base is later securely transmitted to the central distribution
system, where it is used to perform secure communications
with the client.

This unique and novel application of key generation solves
the problem of key distribution, as the private key is never
presented to external components in the client, where it might
be discerned using special tools, such as a logic analyzer.
Instead, it may only be used within the security microproces-
sor itself to decrypt messages originally encrypted with the
public key, the results of which are then provided to external
components.

The remainder of this discussion assumes that all commu-
nications between client and central systems are authenti-
cated and encrypted as described above.

Transmitting Viewing Objects to the Client Systems
Referring again to FIG. 1, in a preferred embodiment the

following steps constitute “transmission” of television view-

ing objects from the central database using slices:

1. There may be many mechanisms for transmitting slices to
the universe of client viewing devices. For instance, the
slices may be directly downloaded over a telephone
modem or cable modem 109, they may be modulated into
lines of the Vertical Blanking Interval (VBI) of a standard
television broadcast 108, or added to a digital television
multiplex signal as a private data channel. One skilled in
the art will readily appreciate that any mechanism which
can transmit digital information may be used to transmit
slices of the television viewing object database.

The first step in preparing television viewing objects for
transmission is recognizing the transmission mecha-
nism to be used for this particular instance, and creating
a slice of a subset of the database that is customized for
that mechanism. For example, the database may contain
television viewing objects relating to all programs in the
country. However, if television viewing objects are to be
sent using VBI modulation on a local television signal,
only those television viewing objects relating to pro-
grams viewable within the footprint of the television
broadcast being used to carry them should be contained
within the relevant slice. Alternatively, if some of the
television viewing objects contain promotional material
related to a particular geographic region, those objects
should not be transmitted to other geographic regions.

In a preferred embodiment, the speed and periodicity of
traversing the database and generating slices for trans-
mission is adjustable in an arbitrary fashion to allow
useful cost/performance tradeoffs to be made. For
instance, it may only be necessary to create slices for
certain transmission methods every other day, or every
hour.

The final step in preparing each slice is to encrypt the slice
using a short-lived symmetric key. Only client devices
which have been authenticated using secure protocols
will have a copy of this symmetric key, making them
able to decrypt the slice and access the television view-
ing objects within it.

2. Once a slice is complete, it is copied to the point at which
the transmission mechanism can take and send the data
110. For telephone connections, the slice is placed on a
telephony server 111 which provides the data to each client
as it calls in. If television broadcast is used, the slice is

US 9,215,400 B2

11

copied onto equipment co-resident with the station televi-
sion transmitter, from whence it is modulated onto the
signal. In these and similar broadcast-oriented cases, the
slice is “carouseled”, i.e., the data describing the slice is
repeated continually until a new slice is provided for trans-
mission.

This repetitive broadcast of slices is required because there
can be no assurance that the signal carrying the data
arrives reliably at each client. The client device may be
powered off, or there may be interference with reception
of the signal. In order to achieve a high degree of prob-
ability that the transmitted slices are properly received at
all client devices, they are continually re-broadcast until
updated slices are available for transmission.

A preferred embodiment uses broadcast mechanisms such
as a television signal to transmit the slice. However, it is
desirable to provide for download over a connection-
based mechanism, such as a modem or Internet connec-
tion. Using a connection-based mechanism usually
results in time-based usage fees, making it desirable to
minimize the time spent transmitting the slice.

This is accomplished using a two-step process. When the
connection is established, the client system sends an
inventory of previously received slices to telephony
servers 111. The server compares this inventory with the
list of slices that should have been processed by that
client. Slices which were not processed are transmitted
to the client system.

3.The slice is transmitted by breaking the encrypted slice into
a succession of short numbered data packets. These pack-
ets are captured by client systems and held in a staging area
until all packets in the sequence are present. The packets
are reassembled into the slice, which is then decrypted. The
television viewing objects within the slice are then filtered
for applicability, possibly being added to the local televi-
sion viewing object database. This process replicates a
portion of the central database of television viewing
objects reliably into the client.

The system keeps track of the time at which data packets
are received. Data packets which are older than a
selected time period are purged from the staging area on
a periodic basis; this avoids consuming space for an
indefinite period while waiting for all parts of a slice to
be transmitted.

Especially when transmitting the objects over a broadcast
medium, errors of various kinds may occur in the trans-
mitted data. Each data packet is stamped with an error
detecting code (a parity field or CRC code, for example).
When an error is detected the data packet is simply
discarded. The broadcast carousel will eventually
retransmit the data packet, which is likely to be received
properly. Slices of any size may thus be sent reliably; this
is achieved at the cost of staging received portions of the
object on the client until all portions are properly
received.

4. There may be one or more “special” slices transmitted
which communicate service related data to the client sys-
tem, particularly service authorization information. It is
important that the service provider be able to control the
client system’s access to premium services if the viewer
has failed to pay his bill or for other operational reasons.
One particular type of special slice contains an “authoriza-

tion” object. Authorization objects are generally
encrypted using asymmetric key encryption based on
the public/private key pair associated with a specific
client. If the slice can be successtully decrypted by the
security microprocessor using the embedded private

15

20

25

30

35

40

45

50

55

60

65

12

key, the slice will contain an object indicating the allow-
able time delay before another authorization object is
received, as well as one or more symmetric keys valid for
a short time period. The delay value is used to reset a
timestamp in the database indicating when the client
system will stop providing services. The symmetric keys
are stored in the local television viewing object database,
to be used in decrypting new slices which may be
received.

Ifthe client has not received a proper authentication object
by the time set in the database, it will commence denial
of most services to the viewer (as specified by the service
provider). Also contained within an authentication
object are one or more limited-lifetime download keys
which are needed to decrypt the slices that are transmit-
ted. Clearly, if a client system is unable to authenticate
itself, it will not be able to decrypt any objects.

Each authorization slice is individually generated and
transmitted. If broadcast transmission is used for the
slices, all relevant authorizations are treated identically
to all other slices and carouseled along with all other
data. If direct transmission is used, such as via a phone
connection, only the authentication slice for that client is
transmitted.

5. Once the client device has received a complete database
slice, it uses the methods described earlier to add the new
object contained within it to the database.

Collecting Information from the Client Systems
Referring again to FIG. 1, in a preferred embodiment the

following steps constitute “collection” of television viewing

objects from each client database:

1. As the viewer navigates the television channels available to
him, the client system records interesting information,
such as channel tuned to, time of tuning, duration of stay,
VCR-like actions (e.g., pause, rewind), and other interest-
ing information. This data is stored in a local television
viewing object.

Additionally, the viewer may indicate interest in offers or
promotions that are made available, or he may indicate a
desire to purchase an item. This information is also
recorded into a local television viewing object.

Additionally, operation of the client device may result in
important data that should be recorded into a television
viewing object. For example, errors may occur when
reading from the hard disk drive in the client, or the
internal temperature of the device may exceed opera-
tional parameters. Other similar types of information
might be failure to properly download an object, running
out of space for various disk-based operations, or rapid
power cycling.

2. At a certain time, which may be immediate or on a periodic
basis, the client system contacts the central site via a direct
connection 104 (normally via phone and/or an Internet
connection). The client device sends a byte sequence iden-
tifying itself which is encrypted with its secret key. The
server fetches the matching television viewing object for
the client device from the database, and uses the key stored
there to decrypt the byte sequence. At the same time, the
server sends a byte sequence to the client, encrypted in its
secret key, giving the client a new one-time encryption key
for the session.

Both sides must successfully decrypt their authentication
message in order to communicate. This two-way hand-
shake is important, since it assures both client and server
that the other is valid. Such authentication is necessary
to avoid various attacks that may occur on the client
system. For example, if communications were not

US 9,215,400 B2

13

authenticated in such a fashion, a malicious party might
create an “alias” central site with a corrupt television
viewing object database and provide bad information to
a client system, causing improper operation. All further
communication is encrypted using the one-time session
key. Encrypted communication is necessary because the
information may pass across a network, such as the
Internet, where data traffic is open to inspection by all
equipment it passes through. Viewing objects being col-
lected may contain information that is considered pri-
vate, so this information must be fully protected at all
times.

Assuming that the authentication phase is successtul, the
two parties treat the full-duplex phone line as two one-
way broadcast channels. New slices are delivered to the
client, and viewing data to be collected is sent back. The
connection is ended when all data is delivered.

One skilled in the art will readily appreciate that this con-
nection may take place over a network, such as the
Internet running standard TCP/IP protocols, transpar-
ently to all other software in the system.

3. Uploaded information is handled similarly by the server; it
is assumed to represent television viewing objects to be
replicated into the central database. However, there may be
many uploaded viewing objects, as there may be many
clients of the service. Uploaded objects are therefore
assigned a navigable attribute containing information
about their source; the object is then indexed uniquely into
the database namespace when it is added.

Uploaded viewing objects are not immediately added to the
central database; instead they are queued for later inser-
tion into the database. This step allows the processing of
the queue to be independent of the connection pattern of
client devices. For instance, many devices may connect
at once, generating a large number of objects. If these
objects were immediately added to the central database,
the performance of all connections would suffer, and the
connection time would increase. Phone calls are charged
by duration, thus any system in which connection time
increases as a function of load is not acceptable.

Another advantage of this separation is that machine or
network failures are easily tolerated. In addition, the
speed at which viewing objects are processed and added
to the central database may be controlled by the service
provider by varying the computer systems and their con-
figurations to meet cost or performance goals.

Yet another advantage of this separation is that it provides
a mechanism for separating data collected to improve
service operations and data which might identify an
individual viewer. It is important that such identifying
data be kept private, both for legal reasons and to
increase the trust individuals have in the service. For
instance, the navigable attribute assigned to a viewing
object containing the record of a viewer’s viewing
choices may contain only the viewer’s zip code, mean-
ing that further processing of those objects can construct
no path back to the individual identity.

Periodic tasks are invoked on the server to cull these
objects from the database and dispose of them as appro-
priate. For example, objects indicating viewer behavior
are aggregated into an overall viewer behavior model,
and information that might identify an individual viewer
is discarded. Objects containing operational information
are forwarded to an analysis task, which may cause
customer service personnel to be alerted to potential

10

15

20

25

30

35

40

45

50

55

60

65

14

problems. Objects containing transactional information
are forwarded to transaction or commerce systems for
fulfillment.

Any ofthese activities may result in new television viewing
objects being added to the central database, or in existing
objects being updated. These objects will eventually be
transmitted to client devices. Thus, the television view-
ing management system is closed loop, creating a self-
maintaining replicated database system 105 which can
support any number of client systems.

Processing of Television Viewing Objects by Client Systems

Television viewing objects may contain the following
types of information: television program descriptions and
showing times; cable, satellite or broadcast signal originator
information, such as channel numbering and identification;
viewer preference information, such as actors, genre, show-
ing times, etc.; software, such as enhanced database software,
application software, operating system software, etc.; statis-
tical modeling information such as preference vectors, demo-
graphic analysis, etc.; and any other arbitrary information that
may be represented as digital data.

Methods Applied to Program Guide Objects

Program guide objects contain all information necessary
for software running in the client system to tune, receive,
record and view programs of interest to the user of the client
system, selecting from among all available programs and
channels as described by objects within the database.

This program guide information is updated on a regular
basis by a service provider. This is handled by the provider
acquiring program guide information in some manner, for
instance, from a commercial supplier of such information or
other sources of broadcast schedule information. This data is
then processed using well-understood software techniques to
reduce the information to a collection of inter-related viewing
objects.

Referring again to FIG. 4, a typical relationship between
program guide objects is shown. A television “network”
object 407 is any entity which schedules and broadcasts tele-
vision programming, whether that broadcast occurs over the
air, cable, satellite, or other suitable medium. A television
“program” object 401 is a description of any distinct segment
of'a television broadcast signal, such as a particular program,
commercial advertisement, station promotion, opener, trailer,
or any other bounded portion of a television signal. A “show-
ing” object 406 is a portion of the broadcast schedule for a
network on which a program is broadcast. A “channel map”
object maps a network broadcast onto a particular broadcast
channel for the medium being used; for instance, a channel
map object for a satellite broadcast service would include
information about the transponder and data stream containing
the broadcast. Using the previously described methods, this
program guide data is replicated from the central site to the
client systems, where application software in the client sys-
tems use the data to manage television viewing.

The service provider may also provide aggregation view-
ing objects, which describe a set of program guide objects that
are interrelated in some fashion. For instance, a “Star-Trek”
collection might contain references to all program guide
objects associated with this brand name. Clearly, any arbi-
trary set of programs may be aggregated in this fashion.
Aggregation objects are similar to directories. For instance,
the Star Trek collection might be found at “/showcases/Star
Trek” in the hierarchical namespace. Aggregation objects are
also program guide objects, and may be manipulated in a
similar fashion, including aggregating aggregation objects,
and so forth.

US 9,215,400 B2

15

The client system may further refine the collection of pro-
gram objects. In a system where programming may be cap-
tured to internal storage, each captured program is repre-
sented by a new program guide object, becoming available for
viewing, aggregation, etc. Explicit viewer actions may also
result in creation of program guide objects. For instance, the
viewer may select several programs and cause creation of a
new aggregation object.

This description of types of program guide objects is not
meant to be inclusive; there may be many different uses and
ways of generating program guide objects not herein
described which still benefit from the fundamental methods
described herein.

Program guide objects are used by the application software
in five ways:

1. In the simplest case, the viewer may wish to browse these
objects to discern current or soon-to-be-available program-
ming. The application software will map the object rela-
tionships described by the database to some form of visual
and audible interface that is convenient and useful for the
viewer. The viewer may indicate that a particular program
is of interest, resulting in some application-specific action,
such as recording the program to local storage when it is
broadcast.

2. Application software may also directly process program
guide objects to choose programs that may be of interest to
the viewer. This process is typically based on an analysis of
previously watched programming combined with statisti-
cal models, resulting in a priority ordering of all programs
available. The highest priority programs may be processed
in an application specific manner, such as recording the
program to local storage when it is broadcast. Portions of
the priority ordering so developed may be presented to the
viewer for additional selection as in case 1.

One skilled in the art will readily appreciate that there is a
great deal of prior art centered on methods for selecting
programming for a viewer based on previous viewing
history and explicit preferences, e.g., U.S. Pat. No.
5,758,257. The methods described in this application are
unique and novel over these techniques as they suggest
priorities for the capture of programming, not the broad-
cast or transmission of programming, and there is no
time constraint on when the programming may be
broadcast. Further details on these methods are given
later in this description.

In general, explicit viewer choices of programming have
the highest priority for capture, followed by program-
ming chosen using the preference techniques described
herein.

3. A client system will have a small number of inputs capable
of receiving television broadcasts or accessing Web pages
across a network such as an intranet or the Internet. A
scheduling method is used to choose how each input is
tuned, and what is done with the resulting captured televi-
sion signal or Web page.

Referring to FIG. 6, generally, the programs of interest to
the viewer may be broadcast at any time, on any channel,
as described by the program guide objects. Additionally,
the programs of interest may be Web page Universal
Resource Locators (URL) across a network, such as an
intranet or the Internet. The channel metaphor is used to
also describe the location, or URL, of a particular Web
site or page.

A viewer, for example, can “tune” into a Web site by
designating the Web site URL as a channel. Whenever
that channel is selected, the Web site is displayed. A Web

10

20

25

30

35

40

45

50

55

60

65

16

page may also be designated as a program of interest and
a snapshot of the Web page will be taken and recorded at
a predetermined time.

The scheduler accepts as input a prioritized list of program
viewing preferences 603, possibly generated as per the
cases above. The scheduling method 601 then compares
this list with the database of program guide objects 604,
which indicate when programs of interest are actually
broadcast. It then generates a schedule of time 607 ver-
sus available storage space 606 that is optimal for the
viewer’s explicit or derived preferred programs. Further
details on these methods are given later in this descrip-
tion.

4. When a captured program is viewed, the matching program
guide object is used to provide additional information
about the program, overlaid on the display using any suit-
able technique, preferably an On Screen Display (OSD) of
some form. Such information may include, but is not lim-
ited to: program name; time, channel or network of original
broadcast; expiration time; running time or other informa-
tion.

5. When live programming is viewed, the application uses the
current time, channel, and channel map to find the match-
ing program guide object. Information from this object is
displayed using any suitable technique as described above.
The information may be displayed automatically when the
viewer changes channels, when a new program begins, on
resumption of the program after a commercial break, on
demand by the viewer, or based on other conditions.

6. Using techniques similar to those described in case 2,
application software may also capture promotional mate-
rial that may be of interest to the viewer. This information
may be presented on viewer demand, or it may be auto-
matically inserted into the output television signal at some
convenient point. For example, an advertisement in the
broadcast program might be replaced by a different adver-
tisement which has a higher preference priority. Using the
time-warping apparatus, such as that described in U.S. Pat.
No. 6,233,389, entitled “Multimedia Time Warping Sys-
tem,” filed Jul. 30, 1998, it is possible to insert any stored
program into the output television signal at any point. The
time-warping apparatus allows the overlaid program to be
delayed while the stored program is inserted to make this
work.

Methods for Generating a List of Preferred Programs

Viewer preferences may be obtained in a number of ways.
The viewer may request that certain programs be captured,
which results in the highest possible priority for those pro-
grams. Alternatively, the viewer may explicitly express pref-
erences using appurtenances provided through the viewer
interface, perhaps in response to a promotional spot for a
particular program, or even during the viewing of a program.
Finally, preferences may be inferred from viewing patterns:
programs watched, commercial advertisements viewed or
skipped, etc.

In each case, such preferences must correspond to televi-
sion viewing objects stored in the replicated database. Pro-
gram objects included a wealth of information about each
particular program, for example: title, description, director,
producer, actors, rating, etc. These elements are stored as
attributes attached to a program object.

US 9,215,400 B2

17

Each individual attribute may result in the generation of a
preference object. Such objects store the following informa-
tion:

1. The type of the preference item, such as actor or director
preference;

2. The weight of the preference given by the viewer, which
might be indicated by multiple button presses or other
means;

3. The statically assigned significance of the preference in
relation to other preferences, for example, actor preference
are more significant than director preferences;

4. The actual value of the preference item, for instance the
name of the director.

With respect to FIG. 5, preference objects are stored in the
database as a hierarchy similar to that described for program
guide objects, however this hierarchy is built incrementally as
preferences are expressed 500. The hierarchy thus con-
structed is based on “direct” preferences, e.g., those derived
from viewer actions or inferred preferences.

A similar hierarchy is developed based on “indirect” pref-
erences pointing to the same preference objects 501. In gen-
eral, indirect preferences are generated when preferences for
aggregate objects are generated, and are used to further
weight the direct preferences implied by the collection of
aggregated objects. The preference objects referenced
through the indirect preference hierarchy are generated or
updated by enumerating the available program objects which
are part of the aggregate object 502, and generating or updat-
ing preference objects for each attribute thus found.

The weight of a particular preference 503 begins at zero,
and then a standard value is added based on the degree of
preference expressed (perhaps by multiple button presses) or
a standard value is subtracted if disinterest has been
expressed. If a preference is expressed based on an aggregate
viewing object, all preferences generated by all viewing
objects subordinate to the aggregated object are similarly
weighted. Therefore, a new weighting of relevant preference
elements is generated from the previous weighting. This pro-
cess is bounded by the degree of preference which is allowed
to be expressed, thus all weightings fall into a bounded range.

In a preferred embodiment of, non-linear combinations
may be used for weighting a preference item. For instance,
using statistical models provided by the central site, the client
may infer that a heavily weighted preference for three
attributes in conjunction indicates that a fourth attribute
should be heavily weighted as well.

The list of preferred programs is generated as follows:

1. A table 504 is constructed which lists each possible pro-
gram object attribute, and any preference objects for that
attribute that are present are listed in that entry.

2. If the preference item is a string, such as an actor name, a
32-bit digital signature for that string is calculated using a
32-bit CRC algorithm and stored with the table item, rather
than the string itself. This allows for much faster scanning
ofthe table as string comparisons are avoided, at the slight
risk of two different strings generating the same digital
signature.

3. For each program object in the database, and for each
attribute of that program, the attribute is looked up in the
table. If present, the list of preference objects for that
attribute is examined for a match with the attribute of the
current program object. If a match occurs, the weight asso-
ciated with that preference object is added to weighting
associated with the program object to generate a single
weight for the program.

10

15

20

25

30

35

40

45

50

55

60

65

18

4. Finally, the program objects are rank-ordered based on the
overall weighting for each program, resulting in a list of
most-preferred to least-preferred programs.

Given this final prioritized list, a recording schedule is
generated using the methods described below, resulting in a
collection of recorded programs of most interest to the
viewer.

Methods Applied to Scheduling Recording Versus Available

Storage Space
As has been described previously, recorded programs will

in general have an expiration date, after which the recorded

program is removed from client storage. The viewer may at
any time indicate that a program should be saved longer,
which delays expiration by a viewer-selected interval. The
system views the available storage for recording programs as

a “cache”; unviewed programs are removed after a time,

based on the assumption they will not be watched if not

watched soon after recording. Viewed programs become
immediate candidates for deletion, on the assumption they are
no longer interesting.

With proper scheduling of recording and deletion of old
programs, it is possible to make a smaller storage area appear
to be much larger, as there is an ongoing flushing of old
programs and addition of new programs. Additionally, if
resources are available, recordings may be scheduled of pro-
grams based on inferred preferences of the viewer; these are
called “fuzzy” recordings. This results in a system where the
program storage area is always “full” of programming of
interest to the viewer; no program is removed until another
program is recorded in its place or the viewer explicitly
deletes it.

Additionally, the viewer may select a program for record-
ing at any time, and the recording window may conflict with
other scheduled recordings, or there may not be sufficient
space obtainable when the program must be recorded. The
system includes unique and novel methods of resolving such
conflicts.

Contflicts can arise for two reasons: lack of storage space,
or lack of input sources. The television viewing system
described herein includes a fixed number of input sources for
recording video and a storage medium, such as a magnetic
disk, of finite capacity for storing the recorded video. Record-
ing all television programs broadcast over any significant
period of time is not possible. Therefore, resolving the con-
flicts that arise because of resource limitations is the key to
having the correct programs available for viewing.

Referring again to FIG. 6, the system maintains two sched-
ules, the Space Schedule 601 and the Input Schedule 602. The
Space Schedule tracks all currently recorded programs and
those which have been scheduled to be recorded in the future.
The amount of space available at any given moment in time
may be found by generating the sum of all occupied space (or
space that will be occupied at that time) and subtracting that
from the total capacity available to store programs. Programs
scheduled for recording based on inferred preferences
(“fuzzy” recordings) are not counted in this calculation; such
programs automatically lose all conflict decisions.

A program may be recorded 603 if at all times between
when the recording would be initiated and when it expires,
sufficient space is available to hold it. In addition, for the
duration of the program, there must be an input available from
which to record it. The Input Schedule 602 tracks the free and
occupied time slots for each input source. In a preferred
embodiment, the input sources may not be used for identical
services, e.g., one input may be from a digital television
signal and another from an analog television signal with

US 9,215,400 B2

19

different programming. In this case, only those inputs from
which the desired program can be recorded are considered
during scheduling.

With respect to FIG. 7, a flowchart is shown describing the
steps taken to schedule a recording in the preferred embodi-
ment. First, an ordered list of showings of the program of
interest are generated 701. Although a preferred embodiment
orders these showings by time, such that the recording is
made as soon as possible, any particular ordering might be
chosen. Each showing in this list 702 is then checked to see if
input 703 or space 704 conflicts occur as described above. If
a showing is found with no conflicts, then the program is
scheduled for recording 705.

Otherwise, a preferred embodiment selects only those
showings of the program which have no input conflicts 706.
Referring again to FIG. 6, one can see that over the lifetime of
a recording the amount of available space will vary as other
programs are recorded or expire. The list of showings is then
sorted, preferably by the minimum amount of available space
during the lifetime of the candidate recording. Other order-
ings may be chosen.

Referring again to FIG. 7, for each candidate showing, the
viewer is presented with the option of shortening the expira-
tion dates on conflicting programs 708, 709. This ordering
results in the viewer being presented these choices in order
from least impact on scheduled programs to greatest 707;
there is no requirement that this ordering be used versus any
other.

Should the viewer reject all opportunities to shorten expi-
ration times, the final step involves selecting those showings
with input conflicts 710, and sorting these showings as in the
first conflict resolution phase 711. The viewer is then pre-
sented with the option to cancel each previously scheduled
recording in favor of the desired program 712, 713. Of course,
the viewer may ultimately decide that nothing new will be
recorded 714.

In a preferred embodiment, all conflicts are resolved as
early as possible, giving the viewer more control over what is
recorded. When the viewer makes an explicit selection of a
program to record, the algorithm described in FIG. 7 is used
to immediately schedule the recording and manage any con-
flicts that arise.

Once an explicit selection has been made, and the viewer
informed that the recording will be done, it will not be can-
celed without explicit approval of the viewer.

Fuzzy recordings are periodically scheduled by a back-
ground task on the client device. Given the prioritized list of
preferred programs as described earlier, the background
scheduler attempts to schedule each preferred program in turn
until the list is exhausted or no further opportunity to record is
available. A preferred program is scheduled if and only if
there are no conflicts with other scheduled programs. A pre-
ferred program which has been scheduled may be deleted
under two conditions: first, if it conflicts with an explicit
selection, and second, if a change in viewer preferences iden-
tifies a higher priority program that could be recorded at that
time.

A further complication arises when handling aggregate
viewing objects for which recording is requested. If conflict
resolution was handled according to the method above for
such objects, a potentially large number of conflicts might be
generated, leading to a confusing and frustrating experience
for the viewer in resolving the conflicts. Thus, when aggre-
gate objects are chosen for recording, conflicts are automati-
cally resolved in favor of the existing schedule.

In a preferred embodiment, conflicts resulting from the
recording of aggregate objects will be resolved using the

20

25

30

35

40

45

50

55

65

20

preference weighting of the programs involved; if multiple

conflicts are caused by a particular program in the aggregate

object, it will only be recorded if its preference exceeds that of
all conflicting programs.

Methods Applied to Software Objects
The client system requires a complex software environ-

ment for proper operation. An operating system manages the
interaction between hardware devices in the client and soft-
ware applications which manipulate those devices. The tele-
vision viewing object database is managed by a distinct soft-
ware application. The time-warping software application is
yet another application.

Itis desirable to add new features or correct defects in these
and other software subsystems which run on the client hard-
ware device. Using the methods described herein, it is pos-
sible to replicate viewing objects containing updated soft-
ware modules into the client system database. Once present in
the client system database, the following unique and novel
methods are used to install the updated software and cause the
client system to begin executing the new software.

The software environment of the device is instantiated as a
sequence of steps that occur when power is first applied to the
device, each step building up state information which sup-
ports proper application of the following step. The last step
launches the applications which manage the device and inter-
act with the viewer. These steps are:

1. A read-only or electrically programmable memory in the
device holds an initial bootstrap sequence of instructions.
These instructions initialize low-level parameters of the
client device, initialize the disk storage system, and load a
bootstrap loader from the disk into memory, to which
execution is then passed. This initial bootstrap may be
changed if it resides in an electrically programmable
memory.

2. The second stage boot loader then locates the operating
system on the disk drive, loads the operating system into
memory, and passes execution to the operating system.
This loader must exist at a specific location on the disk so
as to be easily located by the initial loader.

The operating system performs necessary hardware and
software initialization. It then loads the viewing object data-
base software from the disk drive, and begins execution of the
application. Other application software, such as the time-
warping software and viewer interaction software, are also
loaded and started. This software is usually located in a sepa-
rate area on the disk from the object database or captured
television programs.

Ideally, new software would be installed by simply copying
it to the appropriate place on the disk drive and rebooting the
device. This operation is fraught with danger, especially in a
home environment. Power may fail while copying the soft-
ware, resulting in an inconsistent software image and poten-
tial operating problems. The new software may have defects
which prevent proper operation. A failure may occur on the
disk drive, corrupting the software image.

Although the methods of this disclosure have referred to a
disk drive, one skilled in the art will readily appreciate that the
methods described here apply generally to any persistent
storage system. A disk drive, and other persistent storage
systems, are typically formatted into a sequence of fixed-size
blocks, called sectors. “Partitions™ are sequential, non-over-
lapping subsets of this sequence which break up the storage
into logically independent areas.

With respect to FIG. 8, the system maintains a sector of
information at a fixed location on the disk drive 803 called the
“boot sector” 804. The boot sector 804 contains sufficient

US 9,215,400 B2

21

information for the initial bootstrap 801 to understand the
partitioning of the drive 803, and to locate the second stage
boot loader 806.

The disk is partitioned into at least seven (7) partitions.
There are two (2) small partitions dedicated to holding a copy
of'the second stage boot loader 806, two (2) partitions holding
a copy of the operating system kernel 807, two (2) partitions
containing a copy of the application software 808, and a
partition to be used as scratch memory 809. For duplicated
partitions, an indication is recorded in the boot sector 805 in
which one of the partitions is marked “primary”, and the
second is marked “backup”.

One skilled in the art will readily appreciate that, although
two partitions are described herein for redundancy, triple,
quadruple or greater degrees of redundancy can be achieved
by creating more duplicated partitions.

With respect to FIGS. 94 and 95, on boot 901, the initial
bootstrap code reads the boot sector 902, scans the partition
table and locates the “primary” partition for the second stage
boot loader. It then attempts to load this program into memory
903. If it fails 904, for instance, due to a failure of the disk
drive, the boot loader attempts to load the program in the
“backup” partition into memory 905. Whichever attempt suc-
ceeds, the boot loader then passes control to the newly loaded
program, along with an indication of which partition the
program was loaded from 906.

Similarly, the second stage boot loader reads the partition
table and locates the “primary” operating system kernel 907.
If the kernel can not be loaded 908, the “backup” kernel is
loaded instead 909. In any case, control is passed to the
operating system along with an indication of the source par-
tition, along with the passed source partition from above 910.

Finally, the operating system locates the “primary” parti-
tion containing application software and attempts to load the
initial application 911. If this fails 912, then the operating
system locates the “backup” partition and loads the initial
application from it 913. An indication of the source partition
is passed to the initial application, along with the source
partition information from the previous steps. At this point,
application software takes over the client system and normal
viewing management behavior begins 914.

This sequence of operations provides a reasonable level of
protection from disk access errors. It also allows for a method
which enables new software at any of these levels to be
installed and reliably brought into operation.

An “installer” viewing object in the object database is used
to record the status of software installation attempts. It
records the state of the partitions for each of the three levels
above, including an indication that an attempt to install new
software is underway 915. This operation is reliable due to the
transactional nature of the database.

Referring to FIG. 10, installing a new software image at
any of the three levels is handled as follows: the new software
image is first copied into the appropriate backup partition
1001, and an indication is made in the database that a software
installation is underway 1002. The primary and backup par-
tition indications in the partition table are then swapped 1003,
and the system rebooted 1004. Eventually, control will be
passed to the initial application.

Referring again to FIG. 95, the first task of this application
is to update the installer object. For each level 921, 922, the
application checks if an installation was in process 916, 917,
and verifies that the level was loaded off of the primary
partition 918. If so, the installation at that level was success-
ful, and the installer object is updated to indicate success for
that level 919. Otherwise, the application copies the backup
partition for that level over the primary partition and indicates

10

20

25

30

35

40

45

50

55

60

22

failure in the installer object for that level 920. Copying the

partition insures that a backup copy of known good software

for a level is kept available at all times.

In a preferred embodiment, finalization of the installation
for the top application level of software may be delayed until
all parts of the application environment have been success-
fully loaded and started. This provides an additional level of
assurance that all parts of the application environment are
working properly before permanently switching to the new
software.

Methods Applied to Operations Status Objects
Operations status objects are a class of viewing object in

which information about the usage, performance and behav-

ior of the client system is recorded. These objects are col-
lected by the central site whenever communication with the
central site is established.

The following operations status indicators are recorded for
later collection along with a time stamp:

1. Viewer actions, primarily pressing buttons on a remote
control device, are recorded. Fach “button press” is
recorded along with the current time, and any other con-
textual information, such as the current viewer context.
Post-processing of this object at the central site results in a
complete trace of viewer actions, including the context in
which each action is taken.

2. Automatic actions, such as beginning or ending the record-
ing of a program, or choosing a program to record based on
viewer preferences, are recorded. In addition, deletion of
captured programs is recorded. Post-processing of this
object at the central site results in a complete trace of
program capture actions taken by the client system, includ-
ing the programs residing in the persistent store at any point
in time.

3. Software installation actions, including reception, installa-
tion, and post-reboot results are recorded.

4. Hardware exceptions of various kinds, including but not
limited to: power fail/restart, internal temperature profile
of the device, persistent storage access errors, memory
parity errors and primary partition failures.

Since all actions are recorded along with a time stamp, it is
possible to reconstruct the behavior of the client system using
a linear time-based ordering. This allows manual or auto-
matic methods to operate on the ordered list of events to
correlate actions and behaviors. For instance, if an expected
automatic action does not occur soon after rebooting with
new software, it may be inferred that the new software was
defective.

Processing of Television Viewing Objects by Central Site

Systems

Sources of Television Viewing Objects
A client system has a single source of television viewing

objects: the central site. The central site object database has

many sources of television viewing objects:

1. Program guide information obtained from outside sources
is processed to produce a consistent set of program guide
objects, indicating “programs”, “showings”, “channels”,
“networks” and other related objects. This set of objects
will have dependencies (“channels” depend on “net-
works”, “showings” depend on “programs”) and other
interrelationships. When a complete, consistent set of
objects is ready, it is added to the database as an atomic
operation.

2. New software, including new applications or revisions of
existing software, are first packaged into “software” view-
ing objects. As above, the software may have interdepen-
dencies, such as an application depending on a dynami-
cally loaded library, which must be reflected in the

US 9,215,400 B2

23

interrelationships of the software objects involved. In
another example, there may be two types of client systems
in use, each of which requires different software objects;
these software objects must have attributes present indicat-
ing the type of system they are targeted at. Once a consis-
tent set of objects is available, it is added to the database as
an atomic operation.

3. Each client system has a unique, secret key embedded
within it. The public key matching this secret key is loaded
into a “client” management object, along with other inter-
esting information about the client, such as client type,
amount of storage in the system, etc. These objects are used
to generate authentication objects as necessary.

4. Aggregation program guide objects are added in a similar
fashion. In this case, however, the aggregation object must
refer to primitive program guide objects already present in
the database. Also attached to the aggregation object are
other objects, such as a textual description, a screen-based
icon, and other informational attributes. Once a consistent
set of ancillary objects to the aggregation is available, it is
added to the database as an atomic operation.

5. Data collected from client systems.

It should be clear that there may be any number of sources of

viewing objects, and this enumeration simply shows the most

basic possible sources.

Operations on Television Viewing Objects
There are a large number of possible operations on the

central television viewing object database. The following

examples are meant to show the type of processing that may

be performed, however the potential operations are not lim-

ited to these examples:

1. Using various viewing objects, a number of interesting
statistical analysis tasks may be performed:

1.1. By examining large numbers of uploaded operations
status objects, it is possible to perform extensive analysis
of hardware reliability trends and failure modes. For
instance, it is possible to correlate internal temperature
with expected MTBF (Mean Time Between Failures) of
client devices.

1.2. By examining large numbers of uploaded viewing
information, it is possible to derive demographic or psy-
chographic information about various populations of
client devices. For example, it is possible to correlate TV
programs most watched within specific zip codes in
which the client devices reside.

1.3. Similarly, by examining large numbers of viewing
information objects, it is possible to generate “rating”
and “share” values for particular programs with fully
automated methods, unlike existing program rating
methods.

1.4. There are many other examples of statistical analysis
tasks that might be performed on the viewing object
database; these examples are not meant to limit the
applicability of the techniques described herein, but to
illustrate by example the spectrum of operations that
might be performed.

2. Specialty aggregation objects may be automatically gen-
erated based on one or more attributes of all available
viewing objects.

Such generation is typically performed by first extracting
information of interest from each viewing object, such
as program description, actor, director, etc., and con-
structing a simple table of programs and attributes. An
aggregate viewing object is then generated by choosing
one or more attributes, and adding to the aggregate those
programs for which the chosen attributes match in some
way.

10

15

20

25

30

35

40

45

50

55

60

65

24

These objects are then included in the slices generated for
transmission, possibly based on geographic or other
information. Some example aggregates that might be
created are:

2.1. Aggregates based on events, such as a major league
football game in a large city. In this case, all programs
viewable by client devices in or around that city are
collected, and the program description searched for the
names of the teams playing, coaches names, major play-
er’s names, the name of the ballpark, etc. Matching
program objects are added to the aggregate, which is
then sliced for transmission only to client devices in
regions in and around the city.

2.2. Aggregates based on persons of common interest to a
large number of viewers. For instance, an aggregate
might be constructed of all “John Wayne” movies to be
broadcast in the next week.

2.3. Aggregates based on viewing behavior can be pro-
duced. In this case, uploaded viewing objects are
scanned for elements of common interest, such as types
of programs viewed, actual programs viewed, etc. For
example, a “top ten list” aggregate of programs viewed
on all client devices in the last week might be generated
containing the following week’s showing of those pro-
grams.

2.4. Aggregates based on explicit selections by viewers.
During viewing of a program, the viewer might be pre-
sented with an opportunity to “vote” on the current pro-
gram, perhaps on the basis of four perceived attributes
(storyline, acting, directing, cinematography), which
generates viewing objects that are uploaded later. These
votes are then scanned to determine an overall rating of
the program, which is transmitted to those who voted for
their perusal.

2.5. There are many other examples of how the basic facili-
ties of this system allow the service operator to provide
pre-sorted and pre-selected groups of related programs
to the user of the client device for perusal and selection.
These examples are not meant to limit the applicability
of the techniques described herein, but to illustrate by
example the spectrum of operations that might be per-
formed.

3. Manual methods may also be used to generate aggregate
objects, a process sometimes called “authoring”. In this
case, the person creating the aggregate chooses programs
for explicit addition to the aggregate. It is then transmitted
in the same manner as above.

Clearly, aggregation program objects may also permit the
expression of preferences or recording of other information.
These results may be uploaded to the central site to form a
basis for the next round of aggregate generation or statistical
analysis, and so on.

This feedback loop closes the circuit between service pro-
vider and the universe of viewers using the client device. This
unique and novel approach provides a new form of television
viewing by providing unique and compelling ways for the
service provider to present and promote the viewing of tele-
vision programs of interest to individuals while maintaining
reliable and consistent operation of the service.

Targeting of Content via Client-Side Mechanisms
With the advent of “fat client” devices like the client sys-

tems described above, it is possible to do much more efficient

and selective targeting of content to the consumer. Traditional
content targeting mechanisms rely on server-side tracking of
consumers with targeting decisions made by a central server.

This centralized method presents several problems:

US 9,215,400 B2

25

Scalability—As the number of consumers grows, or the
amount of information kept about each consumer grows,
the central servers need to scale with the growth. This
can be prohibitively expensive.

Privacy—Information about the consumer is kept in a cen-
tral location. Many people don’t like this. Some refuse to
take part, reducing the effectiveness of the mechanism.

Limited targeting—The constraints imposed by both scal-
ability and privacy means that the types of targets that

can be achieved are limited. Some systems only target 10

based on zip code. Others based on similar products
purchased. No system can keep track of everything,
because it would either take up too much space, or con-
sumers simply will not stand for it.

The inventive client system offers a different approach.
Instead of keeping track of consumers in a central location,
keep the consumer’s information in the privacy of his own
home via the client system. The client system makes the
decisions on how to target the consumer. The described
approach affords many benefits, converse to the central-
server approach:

Scalability—As new consumers come on board, they sim-
ply buy themselves a client system. No central servers
need to grow. Since the clients are “fat” they can easily
accept new database schema and objects for new
attributes to keep track of.

Privacy—Everything about the consumer is stored locally,
in their home. The client device may send back anony-
mized reporting data to the telephony servers, but this is
not a requirement.

Limitless Targeting—Because the client systems can
receive metadata, new database schema, and/or software
upgrades, they can easily be reprogrammed with new
targeting algorithms. Existing algorithms on the client
system can be simply modified by sending new metadata
for existing database schema or updating with new
schema.

Examples of Targeting Methods

The inventive client-based form of targeting is infinitely
flexible. It can be applied to almost any multimedia situation,
including, but not limited to: TV shows, movies, advertise-
ments, product and service offerings, music, radio, audio, etc.
Here are several examples:

Targeting of Advertising—Demographic Method

Referring to FIGS. 11 and 12, the distribution server 1101
distribute information on available advertising to the client
systems 1103, 1104, 1105. The targeting of advertising to
consumers using a demographic method occurs as follows:

Client systems 1103, 1104, 1105 keep track only of the
client system’s own zip code.

Distribution servers 1101 download/broadcast to all client
systems 1103, 1104, 1105, a mapping from zip code to
PRIZM codes (see below).

Client system 1103, 1104, 1105, then keeps track of only
its relevant PRIZM codes. The client system is free to
discard the rest.

Distribution servers 1101 download/broadcast to all client
systems 1103, 1104, 1105, metadata about available
advertisements that include the relevant PRIZM codes
that each advertisement applies to, the broadcast time of
the advertisement, the appropriate time of day to present
the ad, appropriate show to present it with, etc.

A client system 1103, 1104, 1105 then decides which ads to
capture on its own and presents them to the consumer
based on the metadata received from the service 1101.
For example, the service transmits a carouseled channel
1202 containing advertisements A, B, C, D, E, and F.

25

30

40

45

50

55

26

Client system 1 1203 may tune in and capture advertise-
ments B and E in a carouseled channel 1202 based on its
PRIZM code, while client system 2 1204 captures adver-
tisement D and client system n 1205 captures advertise-
ment B.

Note how the service 1101 can be a one-way, broadcast
mechanism, yet the consumer gets a completely targeted
advertisement.

The PRIZM (Potential Rating Index for Zip Markets) sys-
tem provides marketing departments with a standardized set
of characteristics, known as clusters, for each zip code in the
United States. In PRIZM, each zip code is assigned one or
several of sixty-two clusters, based on the shared socioeco-
nomic characteristics of the area.

Targeting of TV Programming—Program-Data-Only
Method

This example shows how television programming can be
targeted to a specific viewer using data from the viewer’s
viewing habits and the data on upcoming programs. Upcom-
ing programs that match the viewer’s viewing profile are
recorded—Ilike fuzzy programs described above.

Distribution servers 1101 broadcast/download metadata to
all client systems 1103, 1104, 1105, describing pro-
grams (actors, directors, genres, etc).

Client systems 1103, 1104, 1105, keep track of programs
recorded and viewed, and the user’s preference for these
shows.

The client system builds a “preference profile” which gives
aweight or rating to each actor, director, genre, etc., that
it knows about.

The client system chooses programs that will meet the
user’s personal preference based on this profile.

Note that once again, the service knows nothing of the
user’s personal preferences. All decisions are made pri-
vately, by the client.

Targeting of TV Programming—Collaborative Method

This example demonstrates how collaborative informa-
tion, i.e., information collected across a user base, is used by
aclient system to select programs to record or recommend to
the viewer.

Distribution servers 1101 broadcast/download metadata to
client systems 1103, 1104, 1105, describing pairings or
groupings of programs that were generated based on
anonymous backhaul data (i.e., when viewing objects
are collected from client systems) or any other method
(perhaps even editorially). For example, “Barney” is
paired with “Sesame Street” since households that
watch/like Barney tend to watch/like Sesame Street.

The client system takes this “correlation table” and com-
pares it to programs that the viewer has selected for
recording or has expressed interest in. Other programs
that correlate highly are then recommended or recorded
as fuzzy recordings.

Note that this is similar to other “collaborative filtering”
techniques used by Amazon.com, Netflix.com, etc, the
difference being that the central server need not know
anything about any specific client and that the recom-
mendations are made by the client.

Although techniques are described herein with reference to

a preferred embodiment, one skilled in the art will readily
appreciate that other applications may be substituted for those
set forth herein without departing from the spirit and scope of
the present disclosure. Accordingly, the invention should only
be limited by the Claims included below.

US 9,215,400 B2

27

The invention claimed is:

1. A method, comprising:

accessing, by a recording device, metadata describing pro-

grams;

accessing, by the recording device, correlation data com-

prising groups of related programs, each group identi-
fying at least: a first program played or scheduled for
recording by one or more other recording devices, and
one or more second programs that were also played or
scheduled for recording by the one or more other record-
ing devices;

comparing, by the recording device, the correlation data

with a subset of the metadata describing programs, the
subset describing programs that were previously played
or scheduled for recording by the recording device;

based on the comparing, the recording device selecting a

particular second program, of the programs described in
the metadata, that was identified by a particular group of
the groups of related programs in the correlation data,
based on the recording device determining that a par-
ticular first program in the particular group was previ-
ously played or scheduled for recording by the recording
device;

responsive to selecting the particular second program, the

recording device causing recording the particular sec-
ond program;

wherein the method is performed by one or more comput-

ing devices.

2. The method of claim 1, wherein the comparing com-
prises comparing said correlation data with titles of the pro-
grams that were previously played or scheduled for recording
by the recording device.

3. The method of claim 1, further comprising:

responsive to the recording device selecting the particular

second program, the recording device displaying a rec-
ommendation to schedule the recording of the particular
second program;

responsive to input received in response to displaying the

recommendation, the recording device scheduling the
recording of the particular second program;

recording the particular second program by the recording

device tuning to a specific channel at a specified time to
record the particular second program, in accordance to
the scheduling.
4. The method of claim 1, wherein recording the particular
second program comprises the recording device recording the
particular second program onto at least one storage device.
5. The method of claim 1, further comprising:
receiving, at the recording device, the correlation data from
a server over a network;

wherein the server is configured to collect viewing objects
from the other recording devices and generate the groups
in the correlation data based thereon, each viewing
object of the viewing objects specifying a particular
recording device of the other recording devices and a
particular program played or scheduled for recording by
the particular recording device;
storing, at the recording device, the correlation data as one
or more tables correlating each first program of each
group with each of the one or more second programs that
the group associates with the first program; and

identifying the particular second program based on the one
or more tables.

6. The method of claim 1, further comprising:

responsive to the particular second program having been

selected based on the comparison with the correlation
data, the recording device storing a recording of the

25

40

45

50

55

28

particular second program in association with data indi-
cating that the recording of the particular second pro-
gram is a fuzzy recording;

based on the data indicating that the particular second
program is a fuzzy program, the recording device auto-
matically deleting the recording of the particular second
program in favor of storing a recording of a third pro-
gram that was recorded by the recording device in
response to viewer input specifically requesting the
recording of the third program, without the recording
device having played the particular second program.

7. The method of claim 1, further comprising:

responsive to selecting the particular second program, the
recording device scheduling the recording of the par-
ticular second program;

wherein the first program is a program that was played by
the one or more other recording devices, the one or more
second programs were also played by the one or more
other recording devices, the programs described by the
subset were scheduled for recording by the recording
device, and the particular first program was scheduled
for recording by the recording device.

8. An apparatus for targeting multimedia content to a

viewer using a recording device, comprising:

a processor;

a logic for accessing, by a recording device, metadata
describing programs;

a logic for accessing, by the recording device, correlation
data comprising groups of related programs, each group
identifying at least: a first program played or scheduled
for recording by one or more other recording devices,
and one or more second programs that were also played
or scheduled for recording by the one or more other
recording devices;

a logic for comparing, by the recording device, the corre-
lation data with a subset of the metadata describing
programs, the subset describing programs that were pre-
viously played or scheduled for recording by the record-
ing device;

a logic for based on the comparing, the recording device
selecting a particular second program, of the programs
described in the metadata, that was identified by a par-
ticular group of the groups of related programs in the
correlation data, based on the recording device deter-
mining that a particular first program in the particular
group was previously played or scheduled for recording
by the recording device;

a logic for responsive to selecting the particular second
program, the recording device causing recording the
particular second program.

9. The apparatus of claim 8, wherein the comparing com-
prises comparing said correlation data with titles of the pro-
grams that were previously played or scheduled for recording
by the recording device.

10. The apparatus of claim 8, further comprising:

a logic for, responsive to the recording device selecting the
particular second program, the recording device dis-
playing a recommendation to schedule the recording of
the particular second program;

a logic for, responsive to input received in response to
displaying the recommendation, the recording device
scheduling the recording of the particular second pro-
gram;

a logic for recording the particular second program by the
recording device tuning to a specific channel at a speci-
fied time to record the particular second program, in
accordance to the scheduling.

US 9,215,400 B2

29

11. The apparatus of claim 8, wherein recording the par-
ticular second program comprises the recording device
recording the particular second program onto at least one
storage device.

12. The apparatus of claim 8, further comprising:

a logic for receiving, at the recording device, the correla-

tion data from a server over a network;

wherein the server is configured to collect viewing objects
from the other recording devices and generate the groups
in the correlation data based thereon, each viewing
object of the viewing objects specifying a particular
recording device of the other recording devices and a
particular program played or scheduled for recording by
the particular recording device;

a logic for storing, at the recording device, the correlation
data as one or more tables correlating each first program
of each group with each of the one or more second
programs that the group associates with the first pro-
gram; and

alogic for identifying the particular second program based
on the one or more tables.

13. The apparatus of claim 8, further comprising:

a logic for, responsive to the particular second program
having been selected based on the comparison with the
correlation data, the recording device storing a recording
of'the particular second program in association with data
indicating that the recording of the particular second
program is a fuzzy recording;

a logic for, based on the data indicating that the particular
second program is a fuzzy program, the recording device
automatically deleting the recording of the particular
second program in favor of storing a recording of a third
program that was recorded by the recording device in
response to viewer input specifically requesting the
recording of the third program, without the recording
device having played the particular second program.

14. The apparatus of claim 8, further comprising:

a logic for, responsive to selecting the particular second
program, the recording device scheduling the recording
of the particular second program;

wherein the first program is a program that was played by
the one or more other recording devices, the one or more
second programs were also played by the one or more
other recording devices, the programs described by the
subset were scheduled for recording by the recording
device, and the particular first program was scheduled
for recording by the recording device.

15. One or more non-transitory computer-readable media
storing instructions that, when executed by one or more com-
puting devices, cause:

accessing, by a recording device, metadata describing pro-
grams;

accessing, by the recording device, correlation data com-
prising groups of related programs, each group identi-
fying at least: a first program played or scheduled for
recording by one or more other recording devices, and
one or more second programs that were also played or
scheduled for recording by the one or more other record-
ing devices;

comparing, by the recording device, the correlation data
with a subset of the metadata describing programs, the
subset describing programs that were previously played
or scheduled for recording by the recording device;

based on the comparing, the recording device selecting a
particular second program, of the programs described in
the metadata, that was identified by a particular group of
the groups of related programs in the correlation data,

5

10

15

20

25

30

40

45

50

60

30

based on the recording device determining that a par-
ticular first program in the particular group was previ-
ously played or scheduled for recording by the recording
device;

responsive to selecting the particular second program, the

recording device causing recording the particular sec-
ond program.

16. The one or more non-transitory computer-readable
media of claim 15, wherein the comparing comprises com-
paring said correlation data with titles of the programs that
were previously played or scheduled for recording by the
recording device.

17. The one or more non-transitory computer-readable
media of claim 15, wherein the instructions, when executed
by the one or more computing devices, further cause:

responsive to the recording device selecting the particular

second program, the recording device displaying a rec-
ommendation to schedule the recording of the particular
second program;

responsive to input received in response to displaying the

recommendation, the recording device scheduling the
recording of the particular second program;

recording the particular second program by the recording

device tuning to a specific channel at a specified time to
record the particular second program, in accordance to
the scheduling.
18. The one or more non-transitory computer-readable
media of claim 15, wherein recording the particular second
program comprises the recording device recording the par-
ticular second program onto at least one storage device.
19. The one or more non-transitory computer-readable
media of claim 15, wherein the instructions, when executed
by the one or more computing devices, further cause:
receiving, at the recording device, the correlation data from
a server over a network;

wherein the server is configured to collect viewing objects
from the other recording devices and generate the groups
in the correlation data based thereon, each viewing
object of the viewing objects specifying a particular
recording device of the other recording devices and a
particular program played or scheduled for recording by
the particular recording device;
storing, at the recording device, the correlation data as one
or more tables correlating each first program of each
group with each of the one or more second programs that
the group associates with the first program; and

identifying the particular second program based on the one
or more tables.

20. The one or more non-transitory computer-readable
media of claim 15, wherein the instructions, when executed
by the one or more computing devices, further cause:

responsive to the particular second program having been

selected based on the comparison with the correlation
data, the recording device storing a recording of the
particular second program in association with data indi-
cating that the recording of the particular second pro-
gram is a fuzzy recording;

based on the data indicating that the particular second

program is a fuzzy program, the recording device auto-
matically deleting the recording of the particular second
program in favor of storing a recording of a third pro-
gram that was recorded by the recording device in
response to viewer input specifically requesting the
recording of the third program, without the recording
device having played the particular second program.

US 9,215,400 B2

31

21. The one or more non-transitory computer-readable
media of claim 15, wherein the instructions, when executed
by the one or more computing devices, further cause:

responsive to selecting the particular second program, the

recording device scheduling the recording of the par-
ticular second program;

wherein the first program is a program that was played by

the one or more other recording devices, the one or more
second programs were also played by the one or more
other recording devices, the programs described by the
subset were scheduled for recording by the recording
device, and the particular first program was scheduled
for recording by the recording device.

#* #* #* #* #*

10

32

